解答:证明:(Ⅰ)由于Sn+1=4an+1,①
当n≥2时,Sn=4an-1+1. ②
①-②得 an+1=4an-4an-1. 所以an+1-2an=2(an-2an-1).
又bn=an+1-2an,所以bn=2bn-1.
因为a1=1,且a1+a2=4a1+1,所以a2=3a1+1=4. 所以b1=a2-2a1=2.
故数列{bn}是首项为2,公比为2的等比数列.
(Ⅱ)由(Ⅰ)可知bn=2n,则cn=
=1 log2bn+3
(n∈N*).1 n+3
Tn=c1c2+c2c3+c3c4+…+cncn+1
=
+1 4×5
+1 5×6
+…+1 6×7
1 (n+3)(n+4)
=
?1 4
+1 5
?1 5
+…+1 6
?1 n+3
1 n+4
=
-1 4
<1 n+4
.1 4