设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.(1)当A=B=0,C=1时,求an;(2)若数列{an}为等差数列,

2024-12-05 05:19:44
推荐回答(1个)
回答1:

(1)由题意得,2an+Sn=1,
∴2an-1+Sn-1=1(n≥2),
两式相减,得an

2
3
an?1,…(3分)
又当n=1时,有3a1=1,即a1
1
3

∴数列{an}为等比数列,
an
1
3
(
2
3
)n?1
.…(5分)
(2)①∵数列{an}为等差数列,
由通项公式与求和公式,得:
2an+Sn=2a1+2(n?1)d+
d
2
n2+(a1?
d
2
)n=
d
2
n2+(a1+
3d
2
)n+2a1?2d

∵A=1,C=-2,∴
d
2
=1
,a1-d=-2,
∴d=2,a1=1,∴an=2n-1.(10分)
②bn=
1
an
an+1
+an+1
an

=
1
(2n?1)
2n+1
+(2n+1)
2n?1

=
1
2n?1
2n+1
(
2n?1
+
2n+1
)

=
2n+1
?
2n?1
2n?1
2n+1
(
2n?1
+
2n+1
)(
2n+1
?
2n?1
)

=
2n+1
?
2n?1
2