x趋于0,ax(1-cosx)+b(x-sinx)与x^5等价无穷小,求a,b的值?

2025-04-28 15:17:26
推荐回答(3个)
回答1:

首先x趋近于0,那么x的五次方首先是趋近于0的,另外看题目的等式。因为x和sinx是等价无穷小,所以x趋近于零,+后面的就等于0。再来看前边的,1-cosx很明显,他是等于2sin²1/2x的,所以a和b的值是1和2

回答2:

x->0

cosx =1-(1/2)x^2 +(1/24)x^4 +o(x^4)

1-cosx =(1/2)x^2 -(1/24)x^4 +o(x^4)

ax(1-cosx) =(1/2)ax^3 -(1/24)ax^5 +o(x^5)

sinx = x-(1/6)x^3 +(1/120)x^5 +o(x^5)

x-sinx = (1/6)x^3 -(1/120)x^5 +o(x^5)

b(x-sinx) =(1/6)bx^3 -(1/120)bx^5 +o(x^5)

ax(1-cosx) -b(x-sinx) =[(1/2)a -(1/6)b]x^3 +[ -(1/24)a +(1/120)b]x^5 +o(x^5)

ax(1-cosx)+b(x-sinx)与x^5等价无穷小

=>

(1/2)a -(1/6)b =0                                    (1)  and

-(1/24)a +(1/120)b =1                            (2)

20(2) +(1)

(-5/6 + 1/2)a =20

-(1/3)a =20

a=-60

from (1)

(1/2)a -(1/6)b =0

-30 -(1/6)b =0

b= -180

(a,b)=(-60, -180)

回答3:

详细关心如图所示,希望能帮到你解决你心中的问题