对数据进行分组,在data菜单中点击split file,把分组变量拖入对话框,选一个恰当的呈现方式确定,按正常的回归分析进行分析,最后可以得到不同组的回归方程,每组一个。看统计结果可看X对Y的影响幅度是否有显著性差异,即说明在X对Y的影响中起到了调节作用。
回归是当因变量和自变量为线性关系时,它是一种特殊的线性模型最简单的情形是一元线性回归,由大体上有线性关系的一个自变量和一个因变量组成;模型是Y=a+bX+ε(X是自变量,Y是因变量,ε是随机误差)。
回归分析的主要内容有从一组数据出发,确定某些变量之间的定量关系式;即建立数学模型并估计未知参数。通常用最小二乘法;检验这些关系式的可信任程度。在多个自变量影响一个因变量的关系中,判断自变量的影响是否显著,并将影响显著的选入模型中,剔除不显著的变量。
通常用逐步回归、向前回归和向后回归等方法; 利用所求的关系式对某一过程进行预测或控制。回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据。