高中数学,数学归纳法,在线急求答案!!!

2025-04-06 09:24:40
推荐回答(4个)
回答1:

数列是a(n+1)=a1-1/an还是就是an+1啊。我觉得不可能是an+1。

如果按我所说的,a2=a1-1/a1,这样,很容易可以化简得到
a2=(a^4+a^2+1)/(a^3+a)
由于调节可知a1=(a^2+1)/a,对比一下,发现什么规律没有?注意次方的变化。因此,你就别算什么a3,a4了,直接猜答案吧。

于是猜an的值是 1,a^2,a^4,a^6....a^2n等比数列的和 与 a,a^3,a^5....a^(2n-1)等比数列的和 的比值。

等比数列的和你会算吧?这样an的公式,你就自己算算吧。注意n的数目。

an=[1-a^(2n+2)]/[a-a^(2n+1)]

代入题目条件a(n+1)=a1-1/an,化简得到
(化简过程不说了,肯定能得到的)
a(n+1)=(1-a^(2n+4))/[a-a^(2n+3)]

因此得证

回答2:

这个题目有问题 楼主该不是把题目说错了吧
an+1\an=a1-1 右边是个常数 所以左边的an是个常数。。。。。。。。。。。。。。。。。。。。。 并且an+1=a1 -1/an (n∈N)中n的范围也是错误的。。。。。。当n=1时 。。。。。。。没解
楼主 你自己把含an的一项移到一边,不就得到an+1\an=a1-1 左边右边不是常数么????? 1=-1/a1 那么a1为负数 于是a1=a+ 1/a也是负数 与a大于0矛盾了 同学。。。。。。。。。。。。。。。。。。。。。。。。

回答3:

a2,a3,a4都是很容易求出来的,依次类推,a5.,a6,……,an,上面所有的式子相加,可得到an

回答4:

抄下去做做 明天说啦 (因为怕明天找不到你的问题了所以随便回答一下 抱歉啊)