建立线索二叉树,或者说对二叉树线索化,实质上就是遍历一颗二叉树。在遍历过程中,访问结点的草所是检查当前的左,右指针域是否为空,将它们改为指向前驱结点或后续结点的线索。为实现这一过程,设指针pre始终指向刚刚访问的结点,即若指针p指向当前结点,则pre指向它的前驱,以便设线索。
另外,在对一颗二叉树加线索时,必须首先申请一个头结点,建立头结点与二叉树的跟结点的指向关系,对二叉树线索化后,还需建立最后一个结点与头结点之间的线索。
下面是建立中序二叉树的递归算法,其中pre为全局变量。
BiThrNodeType *pre;
BiThrTree InOrderThr(BiThrTree T)
{ /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/
BiThrTree head;
head=(BitThrNodeType *)malloc(sizeof(BiThrType));/*设申请头结点成功*/
head->ltag=0;head->rtag=1;/*建立头结点*/
head->rchild=head;/*右指针回指*/
if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/
else{head->lchild=T;pre=head;
InThreading(T);/*中序遍历进行中序线索化*/
pre->rchild=head;
pre->rtag=1;/*最后一个结点线索化*/
head->rchild=pre;
};
return head;
}
void InThreading(BiThrTree p)
{/*通过中序遍历进行中序线索化*/
if(p)
{InThreading(p->lchild);/*左子树线索化*/
if(p->lchild==NULL)/*前驱线索*/
{p->ltag=1;
p->lchild=pre;
}
if(p->lchild==NULL)/*后续线索*/
{p->rtag=1;
p->rchild=pre;
}
pre=p;
InThreading(p->rchild);/*右子树线索化*/
}
}