求极限的问题。详细过程!

2025-05-06 01:41:25
推荐回答(1个)
回答1:

解: lim(x->+∞)[1/x+ln(1+e^x)-x]
=lim(x->+∞)(1/x)+lim(x->+∞)[ln(1+e^x)-x]
=0+lim(x->+∞)[ln(1+e^x)-x]
=lim(x->+∞)[ln(1+e^x)-xlne] (应用对数性质)
=lim(x->+∞){ln[(1+e^x)/e^x]}
=ln{lim(x->+∞)[(1+e^x)/e^x]} (应用初等函数的连续性)
=ln{lim(x->+∞)[(1+e^x)'/(e^x)'] (∞/∞型极限,应用洛必达法则)
=ln{lim(x->+∞)(e^x/e^x)}
=ln{lim(x->+∞)(1)}
=ln1
=0。