∫[2ln(x^2 + y^2 + z^2 + 1) / (x^2 + y^2 + z^2 + 1)]dv= ∫2ln(x^2 + y^2 + z^2 + 1) d[ln(x^2 + y^2 + z^2 + 1)]= [ln(x^2 + y^2 + z^2 + 1)]^2 + C 在球面中,有x^2、y^2、z^2∈[0,1]I = 4(ln2)^2