正实数x,y,z满足9xyz+xy+yz+zx=4,求证:(1)xy+yz+zx≥43;(2)x+y+z≥2

2025-05-06 07:33:56
推荐回答(1个)
回答1:

证 (1)记t=

xy+yz+xz
3
,∵x,y,z>0.
由平均不等式xyz=(
3 xy?yz?xz
)
3
2
≤(
xy+yz+zx
3
)
3
2

于是4=9xyz+xy+yz+xz≤9t3+3t2
∴(3t-2)(3t2+3t+2)≥0,而3t2+3t+2>0,
∴3t-2≥0,即t≥
2
3

xy+yz+zx≥
4
3

(2)又∵(x+y+z)2≥3(xy+yz+zx)=4,x,y,z>0.
∴x+y+z≥2.