证 (1)记t=
,∵x,y,z>0.
xy+yz+xz 3
由平均不等式xyz=(
)
3
xy?yz?xz
≤(3 2
)xy+yz+zx 3
3 2
于是4=9xyz+xy+yz+xz≤9t3+3t2,
∴(3t-2)(3t2+3t+2)≥0,而3t2+3t+2>0,
∴3t-2≥0,即t≥
.2 3
∴xy+yz+zx≥
.4 3
(2)又∵(x+y+z)2≥3(xy+yz+zx)=4,x,y,z>0.
∴x+y+z≥2.