(1)an+1=a(1+
)an,得1 n
=a?an+1 n+1
,又bn=an n
,an n
∴bn+1=a?bn
∴数列{bn}是首项b1=1,公比为a的等比数列
∴bn=a n-1,an=n?an-1
(2)
当a=1时Sn=1+2+3+…+n=
n2+n 2
当a≠1时Sn=a0+2a1+3a2+…+nan-1①
aSn=a1+2a2+3a3+…+nan②
①-②得
(1-a)Sn=a0+a1+a2+…an-1-nan=
?nan1?an
1?a
Sn=
?1?an
(1?a)2
=nan
1?a
nan+1?(n+1)an+1 (1?a)2
综上Sn=
a=1
n2+n 2
a≠1nan+1?(n+1)an+1 (1?a)2
当a=
时,Sn=1 3
n(
)n+1?(n+1)(1 3
)n+11 3 (1?
1