由正弦定理得;AC/sinB=BC/sinA
∴sinA=(BC/AC)*sinB
∵AC/BC=3/2,∠B=60°
∴sinA=(2/3)*(√3/2)=√3/3
∵在锐角△ABC中,A为锐角
∴cosA=√(1-sin²A)=√6/3
∴sin(A+45°)
=sinAcos45°+cosAsin45°
=(√3/3)*(√2/2)+(√6/3)*(√2/2)
=(√6+2√3)/6
AC/BC=3/2
sinB/sinA=3/2
B=60°
sinA=根号3/3
cosA=2根号3/3
sin(A+45)=sinAcos45+cosAsin45
=根号6/2