AD‖BC,∠1=∠2,∠3=∠4
DAB+ABC=180
AEB=90
AB上取F使AF=AD
∠3=∠4,AE=AE
AED==AFE
∠DEA=∠AEF
∠AEB=90
DEA+CEB=90
BEF=BEC
∠1=∠2,BE=BE
BEF==BEC
BC=BF
AD+BC=AB
证明:
延长CE交BA延长线于F
∵E是AD中点
∴EF=EC
∵AB//CD
∴∠F=∠4
又∵∠AEF=∠DEC
∴△AEF≌△DEC
∴AF=DC
∵∠F=∠4,∠3=∠4
∴∠F=∠3
∴BF=BC
即BA+AF=BC
即BC=AB+CD