a^2/4∫(0,π/2)sin^2xdx=a^2/4∫(0,π/2)1/2(1-cos2x)dx=a^2/4*1/2x|(0,π/2)-a^2/4*1/4∫(0,π/2)cos2xd(2x)=a^2/4*1/2(π/2-0)-a^2/4*1/4sin2x|(0,π/2)=a^2/4*π/4-a^2/4*1/4[sin2(π/2)-sin2*0]=a^2/4*π/4-a^2/4*1/4[0-0]=a^2/4*π/4