问一道高数题,f(x)在区间(0,1)内可导,<0,1>内连续,f(0)=f(1)=0,f(봀)=

2025-02-25 20:45:39
推荐回答(1个)
回答1:

F(x)=f(x)e^[(1-x)^2]
设a∈(0,1)使得
F'(a)=[F(1)-F(0)]/(1-0)
=1-e<0
设b∈(1,2)使得
F'(b)=[F(2)-F(1)]/(2-1)
=e-1>0
所以,在x∈(0,1)时F(x)单减
x∈(1,2)时,F(x)单增
F(1)为极值点
所以必存在极值点ξ∈(0,2)使得F'(ξ)=0
(直接用介值定理也可)

如果确实是要证明的是ξ∈(0,1)的话,当我没说,我不会做