解答:(1)证明:取AD中点O,则PO⊥AD,
由平面PAD⊥平面ABCD,得PO⊥平面ABCD,
连结OB,设OB∩AC=H,
∵AB=AD=2,DC=1,O是AD中点,AB⊥AD,DC⊥AD,
∴△BAO≌△ADC,
∴∠CAD=∠OBA,
∴∠CAD+∠AOB=∠OBA+∠AOB=90°,
∴∠AHO=90°,∴CA⊥PO,
∴CA⊥平面POB,
∴AC⊥PB.
(Ⅱ)①解:连结BD交AC于F,连结EF,
则EF是平面PBD与平面ACE的交线,
∵直线PD∥平面ACE,
∴PD∥EF,
∴
=PE EB
=DF FB
=DC AB
.1 2
②证明:∵CA⊥面POB,
∴∠PHO,∠EHB分别是二面角P-AC-D与E-AC-B的平面角,
作EG⊥OB于G,在Rt△OAB中,
=OH HB
=AO2
AB2
,1 4
∴OH=
OB,HB=1 5
OB,4 5
又GB=
OB,2 3
∴HG=HB-GB=
OB,2 15
∴
=HG OH
=
OB2 15
OB1 5
=2 3
,EG PO
∴tan∠PHO=tan∠EHG,
∴二面角P-AC-D与E-AC-B大小相等.