川西前陆盆地形成演化与动力学研究

2025-04-30 03:47:05
推荐回答(1个)
回答1:

刘翠荣 吴乃苓 周瑾 宋立衍

(中国石化石油勘探开发研究院,北京 100083)

【摘要】 本文将川西前陆盆地的演化分作4个主要阶段:早期的复理石深前陆盆地阶段、中期的河湖相前陆盆地阶段、晚期的磨拉石前陆盆地阶段和构造隆升阶段。其中第三阶段为盆地发育的主体阶段,又可进一步分为6个亚段。川西前陆盆地是龙门山和大巴山共有的前陆盆地,在盆地的不同演化阶段,各有主次之分,形成演化具幕式特征。其动力学机制是:川西前陆盆岩石圈被动沉降的结果,是在龙门山和大巴山逆掩推覆体(构造负载)和盆地自身的沉积物负载以及侧向挤压力三者的共同作用下所引起的岩石圈的挠曲。其中龙门山和大巴山的侧向挤压力起主导作用,其大小控制着沉降量的大小以及造山带的高度;而川中刚性老地块制约着前隆和次洼的发育规模。

【关键词】 有限元;构造应力场;动力学机制;形成演化;川西前陆盆地

1 川西前陆盆地的演化特征

在对四川盆地周缘造山带及盆地内部沉积、构造特征分析的基础上,结合近年国内外对前陆盆地演化研究的新认识,将四川前陆盆地的演化分为4个阶段(表1)。其中第三阶段为前陆盆地发育的主体阶段,又可分为6个亚阶段。各演化阶段的主要特征如下。

1.1 早期的复理石深前陆盆地阶段

从晚三叠世早期(卡尼克期)到晚三叠世中期(诺利克中期),随着古特提斯洋的关闭,羌塘-吕都地块与扬子地台发生碰撞(刘和甫,1994)。与地壳缩短相伴随,在四川盆地的西部,出现了沉积巨厚的西康群复理石沉积楔,盆地内接受了马鞍塘和小塘子组的沉积。当时龙门山还没有形成,古水流和物源方向自东向西,沉积岩碎屑中以石英为主,反映了早期复理石深前陆盆地的特点。

1.2 中期的河湖相前陆盆地阶段(诺利克晚期-瑞替克早期)

这个阶段相当于须家河二段和须家河三段沉积时期。当时甘孜-阿坝造山带的主体部分——马尔康地块发生由北向南的推挤,形成大幅度的褶皱逆冲,使早中生代地层大范围暴露地表,成为物源区。该造山带南端抵达康滇隆起附近,造山作用使龙门山后山带大规模隆起褶断,推断当时的造山带前渊比现在的前陆盆地更向西,最深部位在龙门山前带。盆地内须家河组二段重矿物分析表明,物源主要在龙门山中北段,须三段中砂岩岩屑含量猛增且出现碳酸盐岩,如关基井须二段砂岩屑含量为16.3%,须三段则上升为44.6%,反映龙门山已经开始隆起。区内以河流及湖沼相、三角洲相沉积为主体,坳陷幅度不大,沉积厚度也相对较小。因此,可以说这一阶段是磨拉石前陆盆地发展的序幕。

1.3 晚期的磨拉石前陆盆地阶段

自晚三叠世晚期(瑞替克中晚期)开始,受古特提斯洋关闭的影响,龙门山、大巴山多次发生强烈褶皱,形成川西磨拉石前陆盆地,在四川盆地内形成了多套砾石。大量的砾石反映了物源区与沉积盆地有较大的地形反差,是物源区强烈上升的结果。物源区从以东为主转为以西为主,并且有明显的被动沉降特点。根据各时期沉积地层的分布、沉降中心的迁移以及构造主压应力方向的变化,可将磨拉石前陆盆地划分为6个亚阶段。

表1 川西前陆盆地沉积—构造演化综合表

1.3.1 龙门山前陆盆地亚阶段(

晚三叠世晚期,龙门山自北向南发生强烈褶皱冲断,也就是所说的安县运动,从而开始了川西磨拉石前陆盆地的历史。龙门山前出现须家河上亚组与下亚组之间以及须家河组与其上覆侏罗系间的不整合接触,所谓的“须上盆”与“须下盆”形成了截然不同的特点。在龙门山前缘形成了须四段的大量砾岩层沉积,古水流方向和物源方向由须家河早期的自东向西为主改变为自西向东为主,沉降中心位于川西(图1),沉降方式也由主动沉降转为被动沉降,显示了典型的磨拉石前陆盆地的特征。其沉积相类型主要是冲积扇-河流-湖泊相沉积,沉积分布范围在西部是退积式,在东部则是加积式,沉积分布范围逐渐向东扩大。

图1 四川盆地须家河组沉积厚度图 (据陈昭国改编)

1.厚度等值线;2.沉降中心

1.3.2 龙门山前陆盆地松弛亚阶段(J1b-J2q)

经过印支晚幕运动的活跃阶段之后,龙门山造山带活动逐渐减弱。由于龙门山推覆体载荷保持不变,也就是说,岩体总的应变量保持不变,而侧向挤压力随着时间的增长而逐渐减小,盆地进入粘弹性松弛阶段,出现中下侏罗统地层向西超覆的现象,并形成了千佛崖组在川西和川北地区的底砾岩。整个川西前陆盆地表现为一个坳陷型的大湖盆,出现川西和川东两个沉降中心,以川东沉降中心为主(图2),以湖相细碎屑、泥质岩沉积为主,成为重要的陆相生油层系。盆地内构造稳定,沉积物泥质含量高。这些都是载荷诱发岩石圈粘弹性调整松弛的构造响应。

1.3.3 大巴山前陆盆地亚阶段(J2x-J2s)

中侏罗世晚期,受古特提斯海关闭的影响,秦岭-大巴山强烈逆冲推覆。这种逆冲推覆作用引起的岩石圈挠曲作用使整个四川盆地被动沉降,广泛接受沙溪庙组沉积(图3),沉降中心迁移到了川东北,并伴随有砾岩层的发育。总之,川西地区此时主要受秦岭-大巴山造山带的影响,并在盆地内形成了一系列NEE-SWW方向的区域性古隆起,对沉积和以后的天然气聚集都起到了至关重要的控制作用。

1.3.4 大巴山前陆盆地松弛亚阶段(J3sn)

晚侏罗世早期,随着大巴山活动的减弱,大巴山前陆盆地进入松弛阶段。从遂宁组的沉积厚度图(图4)上可知,沉积物厚度展布方向不明显,说明遂宁组沉积时湖盆相对稳定,没有多大波动,是地壳活动的稳定期。

图2 四川盆地千佛崖组沉积厚度图 (据陈昭国改编)

1.厚度等值线;2.沉降中心

图3 四川盆地沙溪庙组沉积厚度图 (据陈昭国改编)

1.厚度等值线;2.沉降中心

图4 四川盆地遂宁组沉积厚度图 (据陈昭国改编)

1.厚度等值线;2.沉降中心

1.3.5 龙门山-大巴山复合前陆盆地阶段

自蓬莱镇组沉积开始,西部龙门山多次活动。强烈的上升逆冲与盆地间出现较大的地形反差,在其山前沉积了多套数百米的近源冲积扇砾岩以及河流相的砂砾岩(莲花口组砾岩发育,主要分布于盆地西北部),盆地沉降中心又一次移至川西,形成多套磨拉石堆积。蓬莱镇组沉积后,龙门山再次活动,逆冲推覆作用引起的前陆盆地的岩石圈挠曲作用,使冲断带前缘发生被动沉降,接受下白垩统沉积,形成下白垩统剑门关组砾岩。与此同时,秦岭-大巴山开始活动。虽然它的活动强度较龙门山造山带弱,但也在其前缘形成了相应的前陆盆地。川西地区此时受到前陆两个造山带的共同影响,在NW-SE和S-N两个方向的挤压应力作用下,成为一个复合型的前陆盆地,具有川西、川北两个沉降中心。从蓬莱镇组的等厚图(图5)上可以清楚地看到这些,剑门关组的等厚图上两个沉降中心更是清晰(图6)。

1.3.6 龙门山前陆盆地亚阶段

早白垩世沉积后随着大巴山活动的逐渐减弱,逆冲推覆作用造成的岩石圈的被动沉降也逐渐减小,使川东北广大地区处于隆起状态。此时,龙门山活动也集中于川西南部,致使中晚白垩世-老第三纪沉积主要局限于盆地的西南部(图7),并结束了磨拉石前陆盆地发育的历史。

1.4 隆升阶段

老第三纪末,强烈的喜马拉雅运动从根本上改变了四川盆地的沉积构造面貌,四川大部分地区遭受强烈剥蚀。据对川合127井锆石裂变径迹的研究,该井三叠系地层锆石裂变径迹年龄为41.9~43.8Ma,表明川西凹陷在老第三纪初也已抬升。另外西南局郑祖燕等提供的川125井、川126井、川127井、川128井磷灰石裂变径迹资料(表2)表明,川西在平均25.4Ma时有强烈抬升之势。造山带和盆地的全面抬升,使四川前陆盆地结束了其沉积历史。

图5 四川盆地蓬莱镇组沉积厚度图 (据陈昭国改编)

虚线表示J3P顶缺K的残留厚度,实线表示J3p顶有K保留的厚度

1.厚度等值线;2.沉降中心

图6 四川盆地剑门关组沉积厚度图 (据陈昭国改编)

1.厚度等值线;2.沉降中心

图7 四川盆地中、晚白垩世沉积厚度图 (据陈昭国改编)

1.厚度等值线;2.沉降中心

表2 川西前陆盆地喜马拉雅期抬升时间和剥蚀厚度表

2 川西前陆盆地形成的动力学机制

前陆盆地发生于挤压构造环境,通常是叠加在被动大陆边缘、克拉通或坳拉槽上。现今前陆盆地的概念是在前陆构造环境中,冲断负荷、隆升剥蚀、挠曲沉降、沉积充填相互作用的动力学过程中形成的盆地。形成的主要控制因素为:逆冲带的构造负荷、盆地沉积物负荷以及在造山形成过程中形成的地壳内部水平挤压力,3种构造力同时作用于地壳,导致地壳在克服地幔均衡反力作用的同时发生挠曲沉降,从而形成前陆盆地,并形成与其相伴生的前隆。川西前陆盆地的动力学机制模拟包括以下4个方面的内容。

2.1 地质模型的建立

川西前陆盆地是在早期克拉通和大陆边缘的基础上,后期受龙门山和大巴山造山带的侧向挤压以及盆地沉积物和构造负荷的共同作用,使岩石圈弯曲变形、被动沉降而形成的。其沉积以冲积扇-河流-湖泊相的粗碎屑沉积为特征,沉积中心和沉降中心以及主压力方向随时间而迁移,其形成演化具有多旋回的幕式特征。本文以须家河组四、五段沉积(即龙门山前陆盆地亚阶段)为例,来模拟其形成动力学过程。地质模型以须家河组三段沉积后的实际地质状况为框架,共分作5个层:造山带、断裂带、盖层、基底和刚性地块(见图8)。

2.2 数学与力学模型的建立

本次前陆盆地动力学机制模拟采用Super SAP有限元通用程序。数学和力学模型的建立主要包括两个方面:一是按照有限元数值模拟所要求的数学、力学原则进行单元网络的划分(图8),所得模型共有573个单元,636个结点;二是边界条件的确定,包括西部应力边界、东部约束边界、上部以及下部自由边界。西界为龙门山断裂带,它是长期发展形成的岩石圈断裂,印支期后多层次多期次递进逆冲推覆,主要受NW向的挤压或压扭应力的作用。龙门山向南东的推覆挤压受川中刚性地块的阻挡,使其成为一内约束边界。

图8 川西磨拉石前陆盆地演化成因简化模型

2.3 参数的选取

模型中的力学参数主要包括杨氏模量(E)、泊松比(μ)、密度(ρ)和侧向挤压力(P)。断裂带采用较小的杨氏模量,老山带和结晶基底采用较大的杨氏模量(表3)。

2.4 模拟结果分析

运用SSAP程序,选取上述岩石力学参数,选择多种方案进行调整,直至与实际地质情况相符。即当西部边界施加4.8MPa的侧向挤压力时,得到的基底位移量为2700m,造山带上升约为4000m,同时出现200m左右的前隆和150m左右的次洼(图9)。

各种方案下的模拟结果显示具有以下几个特点。

表3 川西前陆盆地剖面古构造应力场模拟选用的岩石力学参数表

图9 川西磨拉石前陆盆地动力学模拟结果图

(1)侧向挤压的大小控制着盆地岩石圈的挠曲量(即沉降量)以及造山带的高度。侧向挤压力越大,沉降量越大,造山带上升得越高;反之亦然。

(2)在所给定的770km左右的长度范围内,岩石圈弹性厚度为45km时,即出现了前陆盆地的前隆,也出现了前陆盆地的次洼。这一结果与龙门山初次隆升时盆地内须家河组分布的实际状况相吻合,表明模拟结果单可信程度较高。

(3)当取侧向挤压力为零时,仅有构造负荷和沉积物负荷的自重,盆地岩石圈基本不发生挠曲,这表明侧向挤压力对于前陆盆地的形成起着至关重要的作用。只有垂向负荷,不足以形成目前我们所观察到的川西前陆盆地。

(4)当侧向挤压力为5.0MPa时,盆地的沉降量与造山带的高度以及770km范围内的地质状况都与当时前陆盆地的状况相符合,与声发射所测得的古应力值2.1~4.8MPa(罗孝泉,1998)相近。这进一步说明所选用的弹性板挠曲模型能够较好地解释川西前陆盆地的动力学机制。

3 结论

(1)川西前陆盆地是龙门山和大巴山共有的前陆盆地,在盆地的不同演化阶段,各有主次之分。盆地的演化具有多旋回幕式特征,构造应力场的演化亦具有幕式旋回性。构造主应力方向的迁移控制着沉降中心的迁移,也控制着盆地的演化阶段。

(2)模拟结果表明,川西前陆盆地是龙门山和大巴山逆掩推覆体-构造负载和盆地自身的沉积物负载以及侧向挤压力三者的共同作用下所引起的岩石圈的被动沉降。其中侧向挤压力起着主导作用,其大小控制着沉降量的大小以及造山带的高度。川中刚性老地块制约着前隆和次洼的发育规模。

参考文献

[1]陈发景.前陆(或挠曲)盆地分析[M].北京:中国地质大学出版社,1992.

[2]郭正吾.四川盆地形成与演化[M].北京:地质出版社,1996.

[3]朱以文.微机有限元前后处理系统ViZi CAD及其应用[M].北京:科学技术文献出版社,1993.

[4]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986.

[5]王仁.固体力学基础[M].北京:地质出版社,1979.