推荐回答(1个)
你好,很高兴地解答你的问题。
【解析】:
10.
(1)∵∠ABC=90°,∠BAC=30°,
∴∠ACB=60°,
又∵△ABC绕点A顺时针α得到△AED,点E恰好在AC上。
∴CE=AD,
∴∠EAD=∠BAC=30°
∴∠ACD=∠ADC
=1/2×(180°-130°)
=1/2×150°
=75°
∵∠EDA=∠ACB=60°,
∴∠CDE
=∠ADC-∠EDA
=75°-60°
=15°
(2)∵连接BF,
又∵点F是边AC中点,
∴BE=AF=1/2 AC,
∵∠BAC=30°,
∴BC=1/2 AC,
∴∠FBA
=∠BAC
=60°×1/2
=30°
又∵△ABC绕点A顺时针旋转60°得到△AED,
∴∠BAE
=∠CAD
=60°,
∴CB=DE,
∴∠DEA
=∠ABC
=90°
∴DE=BF
∵延长BF交AE于点G,
∴则
∠BGE
=∠GBA+∠BAG
=90°
∴∠BGE=∠DEA
∴BF∥ED
∴四边形BFDE是平行四边形
∴DF=BE



(3)
∵点B、C的坐标分别是(0, )、(0,2),
∴BC=2
又∵∠ABC=90°,
∴∠BAC=30°,
∴AC=4
∴AB=2√3