tanA+tanB=sinA/cosA+sinB/cosB=(sinAcosB+cosAsinB)/(cosAcosB)=sin(A+B)/(cosAcosB)=[sin(A+B)/cos(A+B)][cos(A+B)/(cosAcosB)]=tan(A+B)[(cosAcosB-sinAsinB)/(cosAcosB)]=tan(A+B)[1-(sinA/cosA)(sinB/cosB)]=tan(A+B)(1-tanAtanB)