∵ a cosA = b cosB = c cosC ①,且由正弦定理得: a sinA = b sinB = c sinC ②,∴①÷②得:tanA=tanB=tanC,又A,B,C都为三角形的内角,∴A=B=C=60°,又 a cosA = b cosB = c cosC =4,∴a=b=c=2,即△ABC为边长是2的等边三角形,则△ABC的面积S= 1 2 ×2×2×sin60°= 3 .故选A