y=sinx∧3+sin∧33x的导数

2025-04-30 22:46:16
推荐回答(3个)
回答1:

y=sinx^3+[sin(3x)]^3
可以看作复合函数y=sinu+v^3,u=x^3,v=sinw,w=3x组成
y'=(sinu+v^3)=sin'u+(v^3)'=cosu*u'+3v^2*v'
u'=(x^3)'=3x^(3-1)=3x^2
w'=(3x)'=3
v'=(sinw)'=cosw*w'=cos(3x)*3=3cos(3x)
∴y'=cosu*u'+3v^2*v'=cosx^3*(3x^2)+3[sin(3x)]^2*3cos(3x)=3x^2*cos(x^3)+9cos(3x)*[sin(3x)]^2

回答2:

y' = 3x^2 * cosx∧3 + 33 *sin∧32x * cosx

回答3:

y = sin x³ + sin³(3x)
y'= 3x²cos x³ + 3²sin²(3x)cos(3x)
= 3x²cos x³ + 9 sin²(3x)cos(3x)