极限 limx→∞ x*{e^[1⼀(x-1)]-1}=?为什么不等于0?

2025-02-25 21:50:56
推荐回答(2个)
回答1:

e^[1/(x-1)]-1为无穷小,等价于1/(x-1),
——》原式= limx→∞ x/(x-1)=1。

回答2:

limx*{e^[1/(x-1)]-1} = lim{e^[1/(x-1)]-1}/(1/x) (0/0)
= lim [-1/(x-1)^2]e^[1/(x-1)]/(-1/x^2)
= lim [x^2/(x-1)^2]e^[1/(x-1)]
= lim [x^2/(x-1)^2] * lim e^[1/(x-1)]
= 1*1 = 1