(1)y=2√x-1/x+x√x
y'=1/√x+1/x²+3√x/2
(2)y=(√x+1)(1/√x-1)
y'=√x/2(1/√x-1)-1/2(x)^(-3/2)(√x+1)
(3)y=(1+lnx)(1-lnx)
y'=1/x(1-lnx)+1/x(1+lnx)/[(1-lnx)^2]
(4)y=xlnxsinx
y'=lnxsinx+x(1/xsinx+lnxcosx)=lnxsinx+sinx+xlnxcosx
(5)y=x(e^x-lnx)
y'=e^x-lnx+x(e^x-1/x)=e^x-lnx+xe^x-1
(6)y=(sinx-cosx)/tanx
y'=[(cosx+sinx)tanx-(sinx-cosx)sec^2]/(tanx)^2
不懂再问明白请采纳!