(Ⅰ)∵bcosC=(2a-c)cosB,
∴bcosC+ccosB=2acosB,
由正弦定理得sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=sinA=2sinAcosB,
∴cosB=
1 2
又∵B∈(0,π),∴B=
π 3
(Ⅱ)由已知f(x)=cos(ωx-
)+sinωxB 2
=cos(ωx-
)+sinωx=π 6
cosωx+
3
2
sinωx3 2
=
sin(ωx+
3
)π 6
由已知得
=π,解得ω=22π ω
∴f(x)=
sin(2x+
3
)π 6
当x∈[0,
]时,2x+π 2
∈[π 6
,π 6
],sin(2x+7π 6
)∈[?π 6
,1],1 2
∴当x=
时,f(x)的最大值为π 6