令 u = xy, v = y,
则 x = u / v, dy / dx = (dy / du) * (du / dx) = v * (dv / du),
则 x * (dy / dx) = y * ln(xy) 可以化为 (u / v) * v * (dv / du) = v * ln(u),
即 (1 / v)dv = (ln(u) / u)du,
其通解为 [ln(u)]^2 = 2*ln(v) + C,
换入x,y,得 [ln(xy)]^2 = 2*ln(y) + C,(C为任意常数)。
有帮助请采纳哟╮(╯▽╰)╭
令u=xy,则dy=d(u/x)=(xdu-udx)/x²
有xdu-udx=ulnudx
du/(u+ulnu)=dx/x
ln(lnu+1)=lnx+lnC
lnu=Cx-1
|xy|=e^(Cx-1)