一道天津文科数学高考题

2025-03-01 02:28:23
推荐回答(4个)
回答1:

a1=0,a2=2,a3=4;a4=8,a5=12,a6=18(根据条件可得,因为k是自然数)a7=24,a8=32

a1=0*2+0*2
a2=0*2+0*2+1*2
a3=0*2+0*2+1*2+1*2
a4=0*2+0*2+1*2+1*2+2*2
a5=0*2+0*2+1*2+1*2+2*2+2*2
a6=0*2+0*2+1*2+1*2+2*2+2*2+3*2
a(2*k-1)=0*2+0*2+1*2+1*2+2*2+2*2+3*2+.....+(k-1)*2+(k-1)*2
a(2*k)=0*2+0*2+1*2+1*2+2*2+2*2+3*2+.....+(k-1)*2+(k-1)*2+k*2

a(2*k-1)=2*k*(k-1)
a(2*k)=2*k^2
归纳法验证
3、Tn'=Tn,但是:取an=n^2/2,n为任意自然数。有Tn'<=Tn [这里用换元,取n=2*k]
于是:Tn'=2*n-2
同理:Tn''=Tn.但是an=(n^2-1)/2 【取n=2*k-1】
于是:Tn''=sum(n^2/(n^2-1)) n=2 3 4 5.....
Tn''=2*n-sum(1/(n^2-1))<2*n-sum(1/n^2)=2*n-e 【e是自然对数】
由此求的不等式。当n=2时等号成立。

sum(1/n^2)=e

回答2:

1、a1=0,a2=2,a3=4;a4=8,a5=12,a6=18(根据条件可得,因为k是自然数)a7=24,a8=32
2、看到:
a1=0*2+0*2
a2=0*2+0*2+1*2
a3=0*2+0*2+1*2+1*2
a4=0*2+0*2+1*2+1*2+2*2
a5=0*2+0*2+1*2+1*2+2*2+2*2
a6=0*2+0*2+1*2+1*2+2*2+2*2+3*2
因此:a(2*k-1)=0*2+0*2+1*2+1*2+2*2+2*2+3*2+.....+(k-1)*2+(k-1)*2
a(2*k)=0*2+0*2+1*2+1*2+2*2+2*2+3*2+.....+(k-1)*2+(k-1)*2+k*2

化简后为:a(2*k-1)=2*k*(k-1)
a(2*k)=2*k^2
最后用归纳法验证
3、Tn'=Tn,但是:取an=n^2/2,n为任意自然数。有Tn'<=Tn [这里用换元,取n=2*k]
于是:Tn'=2*n-2
同理:Tn''=Tn.但是an=(n^2-1)/2 【取n=2*k-1】
于是:Tn''=sum(n^2/(n^2-1)) n=2 3 4 5.....
Tn''=2*n-sum(1/(n^2-1))<2*n-sum(1/n^2)=2*n-e 【e是自然对数】
由此求的不等式。当n=2时等号成立。

sum(1/n^2)=e

回答3:

百度一下

回答4:

把题目写上