大学数学计算积分,第(2)题怎么做?要过程

2025-05-05 03:56:27
推荐回答(1个)
回答1:

原式=∫√[9-(x+2)²]dx
令x+2=3sinu, u在[-π/2, π/2]区间
则dx=3cosudu
原式=∫3cosu(3cosudu)
=9∫(cos²u)du
=4.5∫(1+cos2u)du
=4.5(u+0.5sin2u)+C
=4.5[arcsin(x+2)/3+(x+2)/3√(1-(x+2)²/9)]+C
=9/2arcsin[(x+2)/3]+(x+2)/2√[9-(x+2)²]+C