(2010?石景山区一模)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB

2025-04-28 08:06:40
推荐回答(1个)
回答1:

解答:解:如图,
(Ⅰ)证明:∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC;
又∵CF?平面ABC,∴CF⊥BB1

(Ⅱ)解:∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC.
又∵AC?平面ABC,∴AC⊥BB1
∵∠ACB=90°,∴AC⊥BC.
且BB1∩BC=B,∴AC⊥平面ECBB1
∴四棱锥VA?ECBB1的体积为
VA?ECBB1

1
3
SECBB1?AC.
由E是棱CC1的中点,∴EC=
1
2
AA1=2

SECBB1
1
2
(EC+BB1)?BC=
1
2
×(2+4)×2=6

VA?ECBB1
1
3
SECBB1?AC=
1
3
×6×2=4


(Ⅲ)解:CF∥平面AEB1.现证明如下:
取AB1的中点G,连接EG,FG.∵F、G分别是棱AB、AB1中点,
∴FG∥BB1,且FG=
1
2
BB1
又∵EC∥BB1,且EC=
1
2
BB1
,∴FG∥EC,且FG=EC.
∴四边形FGEC是平行四边形.∴CF∥EG.
又∵CF?平面AEB1,EG?平面AEB1
∴CF∥平面AEB1