解:如图所示
连接PA、PB和PC作辅助线
∵AH⊥BC
∴S△ABC = (BC * AH)/2
同理,可得:
S△PAC = (AC * PG)/2
S△PAB = (AB * PE)/2
S△PBC = (BC * PF)/2
∵S△ABC = S△PAC + S△PAB + S△PBC
∴(BC * AH)/2 = (AC * PG)/2 + (AB * PE)/2 + (BC * PF)/2
∵AB=BC=AC
∴(BC * AH)/2 = (AC * PG)/2 + (AB * PE)/2 + (BC * PF)/2 = [BC * (PG+PE+PF)]/2
∴AH = PG+PE+PF
PE+PF+PG=AH 理由如下
连接AP BP CP
S三角形ABC=S三角形ABP+S三角形BCP+S三角形APC
=1/2*AB*PE+1/2*BC*PF+1/2*AC*PG
∵AB=AC=BC
∴S=1/2BC*(PE+PF+PG)
S=1/2*BC*AH
∴PE+PF+PG=AH(等量代换)