∵x+y+z=0,∴(x+y+z)^2=0,∴x^2+y^2+z^2+2(xy+yz+xz)=0,
又x^2+y^2+z^2=1,∴xy+yz+xz=-1/2。
很明显,当x=0时,xyz=0。
当x不为0时,由xy+yz+xz=-1/2,得:xyz+x^2(y+z)=-x/2,
∴xyz+x^2[(x+y+z)-x]=-x/2,∴xyz-x^3=-x/2,∴xyz=x^3-x/2。
令f(x)=xyz=x^3-x/2,得:f′(x)=3x^2-1/2,f″(x)=6x。
∴当x<0时,f(x)有极大值,当x>0时,f(x)有极小值。
令f′(x)=0,得:3x^2-1/2=0,∴x^2=1/6,∴x=1/√6,或x=-1/√6。
∴当x=-1/√6时,f(x)的极大值=(-1/√6)^3+1/(2√6)=(1/18)√6。
当x=1/√6时,f(x)的极小值=(1/√6)^3-1/(2√6)=-(1/18)√6。
∴xyz的极大值为(1/18)√6,极小值为-(1/18)√6。