lim(x->0) f(x)/(1-cosx)
=lim(x->0) [f(x)-f(0)]/x * x/(1-cosx)
=f'(0) * lim(x->0) x/(1-cosx)
=f'(0) * lim(x->0) 1/sinx = 2
而:lim(x->0) 1/sinx = 无穷大
所以:f'(0)=0
而:lim(x->0) f(x)/(1-cosx)
=f'(0) * lim(x->0) 1/sinx
=lim(x->0) f'(x)/sinx
=lim(x->0) [f'(x)-f'(0)]/x * x/sinx
=f"(0) * lim(x->0) x/sinx
=f"(0)
所以:f"(0)=2>0
所以:f(0)为极限值
选答案D
答案:D