∫1⼀(x*√(1-x^2 ))dx 需要过程??

2025-04-06 14:34:05
推荐回答(1个)
回答1:

解:令x=sint,dx=cost
∫1/[x-√(1-x^2)]dx
=∫cost/(sint-cost)dt
令cost=a[sint-cost]+b[sint-cost]'=a[sint-cost]+b[cost+sint]=(a+b)sint+(b-a)cost
则a+b=0,b-a=1,解得a=-1/2,b=1/2
那么∫cost/(sint-cost)dt
=(1/2)∫[-(sint-cost)+(sint-cost)']/(sint-cost)dt
=-(1/2)∫dt+(1/2)∫1/(sint-cost)d(sint-cost)
=1/2[-t+ln|sint-cost|+C
三角代换t=arcsinx,sint=x,cost=√(1-x²)
所以
∫1/[x-√(1-x^2)]dx

=1/2[-arcsinx+ln|x-√(1-x²)|]+C
如果帮到您的话,可以好评吗?谢谢了!!!(右上角采纳)