(1) ∵cos(a+b)=4/5 3π/2 ∴sin(a+b)=-√(1- 16/25)=-3/5 ∵cos(a-b)=-4/5,π/2 ∴sin(a-b)=3/5 cos2b=cos[(a+b)-(a-b)] =cos(a+b)cos(a-b)+sin(a+b)sin(a-b) =4/5(-4/5)-3/5(3/5) =-1(2) ∵π/2 ∴π 2b=π ∴ b=π/2
cos(a+b)=-4/5,cos(a-b)=4/5sin(a+b)=3/5sin(a-b)=-3/5cos2a=cos[(a+b)+(a-b)]=cos(a+b)cos(a-b)-sin(a+b)sin(a-b)=-4/5*4/5+3/5*3/5= -7/25