∵OB、OC、OA分别是∴〈BOC=180°-B/2-C/2=180°-(B+C)/2=180°-(180°-A)/2=90°+A/2,∵〈BDO=〈A+〈AED,(外角等于不相邻二内角和),∵AO⊥OE。〈AEO=90°-A/2,∴〈BDO=〈A+90°-〈A/2=90°+A/2,∴〈BDO=〈BOC,∵〈DBO=〈OBC,∴△BOC∽△BDO,同理可证∴△OEC∽△BDO。