帮忙求解一道高一数学指数函数的题:已知0小于x小于y小于1,比较x^x、x^y、y^x的大小。

2025-02-26 22:28:31
推荐回答(6个)
回答1:

0y=a^x 当0所以
x^x>x^y
y=x^a 在定义域内为增函数
所以 x^x综上 x^y

回答2:

利用指数函数单调性可得:x^y幂函数单调性可得:y^x>x^x
所以 x^y如果是选择题,可以直接带具体数字哦

回答3:

x=x
xy>x

回答4:

呵呵,楼主是进入误区了,表面上看是指数底数都不一样,不能比较,不过你仔细看看,可以在图上画2条指数函数的图像,(要底数小于1的,也就是递减的2条)
画好之后,更陡的是以X为低,平缓些的是Y,应该懂吧,概念问题了,不懂可以再问我
然后再把这3个点标出来,就很容易看出了y^x>x^x>x^y

回答5:

。y=a^x(a为常数在0 1之间)是减函数,y=x^a增函数

回答6:

这种题一般会比较特殊,底数相同,指数不同的比较,得出一组大小关系,再指数相同的,底数不同的比较,又得出一组大小关系,综合一下,一般就可以得出结果了