函数f(x)=√2+1⼀√(x²-2x+3)的值域是

2024-12-04 13:10:52
推荐回答(1个)
回答1:

f(x)=√2+1/√(x²-2x+3)=√2+1/[(x-1)^2+2]≤√2+1/√2=3√2/2 ,又因为1/√(x²-2x+3)>0,所以值域为
(√2,3√2/2]