从1开始连续n个数之和可表达为
1+2+3+……+n = n(n+1)/2
对于题目中中任意一项,可以写成
1/(1+2+3+……+n) = 2/[n(n+1)]= 2*[1/n - 1(n+1)]
所以
1+1/(1+2)+1/(1+2+3)+-------+1/(1+2+3+----+50)
= 2*[ 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 …… + 1/49 - 1/50 + 1/50 - 1/51 ]
= 2 * ( 1 - 1/51)
= 2 * 50/51
= 100/51
原式=1+(1+2)/1+(1+2+3)/1+(1+2+3+4)/1+……+(1+2+3+4+5+6……+50)/1
=1+(1+2)+(1+2+3)+(1+2+3+4)+……+(1+2+3+4+……+50)
=1+(1+2)*2/2+(1+3)*3/2+…+(1+50)*50/2
=(2+3*2+4*3+…+51*50)/2
=(2*1+3*2+4*3+…+51*50)/2
=〔(1*1+1)+(2*2+2)+(3*3+3)+…+(50*50+50)〕/2
=〔(1*1+2*2+3*3+…+50*50)+(1+2+3+…+50)〕/2
=〔(50*51*101)/6+(1+50)*50/2〕/2
=(42925+1275)/2
=22100
做得好麻烦啊...应该不是最好的办法吧...
1/(1+2+....n)=1/[(1+n)n/2]=2/[n(n+1)]=2[1/n-1/(n+1)]
所以原式=1+2(1/2-1/3)+2(1/3-1/4)+....+2(1/50-1/51)
=1+2(1/2-1/3+1/3-1/4+....+1/50-1/51)
=1+2(1/2-1/51)
=1+1-2/51
=100/51
A分之B应该表示为B/A...你打错了
学过等差数列吧????
分母化成等差数列的求和公式把2提出来
为:2(1/(1×2)+1/(2×3)+1/(3×4)+....+1/(51×50))=
2((1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/50-1/51))=
100/51
用了累差法...如果看不懂算我白打了..
估计那些和是分母吧,
楼主把和换成等差数列和公式再作应该没什么问题了哈