解:因为:x=(2+√3)分之1=2-√3,y=(2-√3)分之1=2+√3
所以(x+1)分之1 + (y+1)分之1
=(3-√3)分之1 + (3+√3)分之1
=6分之(3+√3+3-√3)
=1
x=2+根号3分之1=2+根号3/3,y=2-根号3分之1=2-根号3/3,所以
x+1分之1+y+1分之1=1/(1+2+根号3/3)+1/(1+2-根号3/3)=9
解:
x=1/(2+√3)=(2-√3)/(2-√3)(2+√3)=2-√3
y=1/(2-√3)=(2+√3)/(2+√3)(2-√3)=2+√3
x+y=2-√3+2+√3=4
xy=(2-√3)(2+√3)=4-3=1
∴1/(x+1)+1/(y+1)
=(x+1+y+1)/(x+1)(y+1)
=(x+y+2)/(xy+x+y+1)
=(4+2)/(1+4+1)
=6/6
=1
约等于1