海森堡测不准原理认为,在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。精确地知道其中一个变量的同时,必定会更不精确地知道另外一个变量。但研究人员认为,在不久的未来量子存储器出现之后,利用量子存储器一对纠缠态的粒子能够被同时精确测量位置和动量。研究人员指出,当两个粒子纠缠,对其中一个粒子的一个变量的阅读会导致这对粒子的波函数坍缩,从而给予所有变量有限的值选择。因此,通过利用量子纠缠的过程,使用两个粒子去计算出一个粒子的完整量子态是完全可能的,他们可以测量出不能同时精确测量的位置和动量值。测量也许不是十分精确,但这无疑打破了海森堡测不准原理的限制。 要解释测不准的问题,我们先得问一问:什么叫做测准了?当你深信你精确地了解到某种物体的某种性质时,那么,不管你得到的数据怎么样,你都确信它没有问题。 但是,你怎样才能了解到那个物体的某种性质呢?无论用什么方法,你都必定要同那个物体发生相互作用。你必须把它称一称,看看它有多重;或者把它敲一敲,看看它的硬度有多大;再不然,你就得直盯着它,看看它在什么地方。而这时就必定有相互作用,不过这些相互作用是比较缓和的。 现在我就可以争辩说,这种相互作用总是会给你所力求测定的那种性质本身带来一些变化。换句话说,在了解某种事物时会由于了解它那个动作本身而使那种事物发生改变,因此,归根结蒂,你根本没有精确地了解到这种事物。 举个例子吧,假定你想测量出澡盆里热水的温度。于是,你把一根温度计放入水中,对水的温度进行测量。可是温度计是凉的,它放入水中就会使水的温度稍稍降低。这时,你仍然可以得到热水温度的很好的近似值,但是它不会精确到一万亿分之一度。温度计已经改变了它所要测量的那个温度,而这种变化几乎是无法测出的。 再举个例子,假定你想测量轮胎中的空气压力,你就要让轮胎逸出极小量的空气来推动测压计的活塞。但是,有空气逸出这个事实就说明,空气的压力已经由于测量它这一动作而稍稍降低了。 有没有可能发明一些非常微小、非常灵敏,而又不直接同所要测量的性质发生关系的测量器件和方法,因而也就根本不会给所要测量的性质带来丝毫变化呢? 德国物理学家维尔纳·海森堡在1927年断言说,这是不可能做到的。一个测量器件只能小到这种程度:它可以小到同一个亚原子粒子一样小,但却不能小于亚原子粒子。它所使用的能量可以小到等于一个能量子,但再小就不行了。然而,只要有一个粒子和一个能量子就已经足以带来一定的变化了。即使你只不过为了看到某种东西而瞧它,你也得靠从这个物体上弹回来的光子才能看到它,而这就已经使它发生变化了。 这样的变化是极其微小的,在日常生活中我们可以把它们忽略掉,而且我们也正是这样做的——但是,这种变化仍然存在。不过,要是你所碰到的是极其微小的物体,这时就连极其微小的变化也显得挺大,那又会出现什么情况呢? 例如,如果你想要说出某个电子的位置,那么,为了“看到”这个电子,你就得让一个光量子(更可能是一个γ射线光子)从它上面弹回来。这样一来,那个光子就会使电子的位置发生变化。 具体地说吧,海森堡成功地证明了,我们不可能设想出任何一种办法,把任何一种物体的位置和动量两者同时精确地测量下来。你把位置测定得越准确,你所能测得的动量就越不准确,你测得的动量越准确,你所能测定的位置就越不准确。他还计算出这两种性质的不准确度(即“测不准度”)应该是多大,这就是他的“测不准原理”。 这个原理指出,宇宙具有某种“微粒性”。你要是尽力把报纸上的图象放大,最后,你就会把它放大到这样一个程度:你会看到许多细小的颗粒或是斑点,而根本看不到图象的详细结构。如果你想细致地观察宇宙,你也会碰到同样的情况。 这一点使某些人感到失望,他们把这个原理看作是人类永远无知的自供状。但事情根本不是如此。我们感兴趣的是想知道宇宙是怎样工作,而测不准原理正好是宇宙的工作的一个关键性因素,宇宙存在着“微粒性”,问题就在这里。海森堡为我们指出了这一点。 应该叫不确定性原理。不确定性原理很长一段时间被称作测不准原理,但事实上,不确定性原理是物理世界自身存在的原理,与测量与否没有关系(具体请看本条目下面“观察者效应”一节),因此,该译名其实误解了这个原理。另外,英语中称此原理为Heisenberg Uncertainty Principle,直译为海森堡不确定性原理,并没有测不准原理这种说法,其他语言与英语的情况类似,除中文外,并无测不准原理一词。现在,在中国大陆的教科书中,该原理的正式译名已改为不确定性原理,仅在括号中注明“又叫测不准原理”。
海森堡不确定性原理又名“测不准原理”、“不确定关系”,英文"Uncertainty principle",是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差的乘积必然大于常数 h/2π (h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理。
为啥不百度百科。。。