lim(x→∞)[x-(x^2)ln(1+1/x)] (t=1/x,t→0)=lim(t→0)[1/t-ln(1+t)/t^2] =lim(t→0)[t-ln(1+t)]/t^2=lim(t→0)[1-1/(1+t)]/(2t)=lim(t→0)t/[(1+t)(2t)]=1/2