C4植物为什么是高光效植物,其光呼吸为什么较低?
1. 解剖结构上: C4植物花环型结构,叶肉细胞固定CO2 ,起CO2泵作用,提高卡尔文循环场所(鞘细胞) CO2浓度。鞘细胞中的光合产物可就近运入维管束,从而避免了光合产物累积对光合作用可能产生的抑制作用。
2. 生理上:PEPC活性是RuBPC活性的60倍。 C4植物的叶肉细胞中的PEPC对底物HCO3-的亲和力极高,细胞中的HCO3-浓度一般不成为PEPC固定CO2的限制因素;
3. C4植物光呼吸很弱。BSC中有高浓度的CO2从而促进Rubisco的羧化反应,降低了光呼吸,且光呼吸释放的CO2又易被再固定;
c4植物叶片的维管束薄壁细胞较大,其中含有许多较大的叶绿体,叶绿体没有基粒或基粒发育不良;维管束鞘的外侧密接一层成环状或近于环状排列的叶肉细胞,组成了“花环型”(kranz
type)结构.这种结构是c4植物的特征.叶肉细胞内的叶绿体数目少,个体小,有基粒.维管束鞘薄壁细胞与其邻近的叶肉细胞之间有大量的胞间连丝相连.c3植物的维管束鞘薄壁细胞较小,不含或很少叶绿体,没有“花环型”结构,维管束鞘周围的叶肉细胞排列松散.c4植物通过磷酸烯醇式丙酮酸固定二氧化碳的反应是在叶肉细胞的细胞质中进行的,生成的四碳双羧酸转移到维管束鞘薄壁细胞中,放出二氧化碳,参与卡尔文循环,形成糖类,所以甘蔗、玉米等c4植物进行光合作用时,只有维管束鞘薄壁细胞形成淀粉,在叶肉细胞中没有淀粉.而水稻等c3植物由于仅有叶肉细胞含有叶绿体,整个光合过程都是在叶肉细胞里进行,淀粉亦只是积累在叶肉细胞中,维管束鞘薄壁细胞不积存淀粉.
c4植物具有co2泵可以
通过c的固定转化
以达到曾加co2浓度的的目的
c4植物所具备的pep羧化酶对co2具有很强的亲合力,可以促使pep把大气中浓度很低的co2固定下来,并且使c4集中到维管束鞘细胞内的叶绿体中,供维管束鞘细胞内叶绿体中的c3途径利用
这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制了RuBPCase的加氧活性,降低了光呼吸,从而使C4植物保持