计算初一数学题。请解得详细一点,而且不要用太复杂的方法,简单一点,最好附上文字叙述,甚谢。

2025-04-30 03:37:19
推荐回答(5个)
回答1:

令x=1/2+1/3+1/4+……+1/2005
y=1/2+1/3+1/4+……+1/2004
则上式为
x*(y+1)-(1+x)*y=x-y=(1/2+1/3+1/4+……+1/2005)-(1/2+1/3+……+1/2004)=1/2005

回答2:

令1/2+1/3+……+1/2004=t
(1/2+1/3+1/4+……+1/2005)*(1+1/2+1/3+……+1/2004)-(1+1/2+1/3+……+1/2005)*(1/2+1/3+……+1/2004)
=(t+1/2005)*(1+t)-(1+t+1/2005)*t
=(t+1/2005)+t*(t+1/2005)-[t+t*(t+1/2005)]
=(t+1/2005)+t*(t+1/2005)-t-t*(t+1/2005)
=(t+1/2005)+t*(t+1/2005)-t*(t+1/2005)-t
=t+1/2005-t
=1/2005

回答3:

(1/2+1/3+…+1/2005)* (1+1/2+1/3+…+1/2004)-(1+1/2+1/3+…+1/2005)*(1/2+1/3+…+1/2004)
=(1/2+1/3+…+1/2005)*[1+(1/2+1/3+…+1/2004)]- [1+(1/2+1/3+…+1/2005)]*(1/2+1/3+…+1/2004)
=[(1/2+1/3+…+1/2005)*1+(1/2+1/3+…+1/2005)*(1/2+1/3+…+1/2004)]-[1*(1/2+1/3+…+1/2004)+(1/2+1/3+…+1/2005*(1/2+1/3+…+1/2004)]
=(1/2+1/3+…+1/2005)*1+(1/2+1/3+…+1/2005)*(1/2+1/3+…+1/2004)-1*(1/2+1/3+…+1/2004)- (1/2+1/3+…+1/2005)*(1/2+1/3+…+1/2004)
=(1/2+1/3+…+1/2005)*1-1*(1/2+1/3+…+1/2004)
=(1/2+1/3+…+1/2005)- (1/2+1/3+…+1/2004)
=1/2005

回答4:

(1/2+1/3+1/4+……+1/2005)*(1+1/2+1/3+……+1/2004)-(1+1/2+1/3+……+1/2005)*(1/2+1/3+……+1/2004)=(1/2+1/3+1/4+……+1/2005)+(1/2+1/3+1/4+……+1/2005)*(1/2+1/3+……+1/2004)-(1/2+1/3+……+1/2004)-(1/2+1/3+……+1/2005)*(1/2+1/3+……+1/2004)=1/2005

回答5:

设A=1/2+1/3+1/4+。。。+1/2004 B=1+1/2+1/3+。。。+1/2004
原式=(A+1/2005)*B-(B+1/2005)*A
=AB+1/2005*B- AB -1/2005*A
=1/2005(B-A)
=1/2005*1
=1/2005