原式=∫(0,√3) t/(1+t^2)dt
=(1/2)*∫(0,√3) d(1+t^2)/(1+t^2)
=(1/2)*ln|1+t^2||(0,√3)
=ln2
(3)令t=x-π/2,x=t+π/2,dx=dt
原式=∫(-π/2,π/2) √[1+cos(2t+π)]dt
=∫(-π/2,π/2) √(1-cos2t)dt
=2*∫(0,π/2) √(1-cos2t)dt
=2√2*∫(0,π/2) costdt
=2√2*sint|(0,π/2)
=2√2
ARS
32
无向图,有向图都是
长为x的通路看邻接矩阵幂次为x的矩阵,长为x的回路看邻接矩阵幂次为x的矩阵的对角线
线代学懂了,这些就懂了。离散难的还不是这些呢