把被积分式化为1/2*[1/(x+1)]-1/2*[x/(x²+1)]+1/2*[1/(x²+1)]
最后一项积分为1/2acrtanx在(0,+∞)上的积分为π/4
前两项初看是无穷大减无穷大,第一项原函数是1/2Ln(x+1),第二项是-1/4Ln(x²+1),合并后为
1/2Ln[(x+1)/√(x²+1)],0和∞时都为零。
所以结果为π/4。
可能还有更严谨的算法,继续加关注。
∫(0->+∞) dx/[(1+x)(1+x²)]
= (1/2)∫(0->+∞) (1-x)/(1+x²) dx + (1/2)∫(0->+∞) dx/(1+x)
= (1/2)∫(0->+∞) dx/(1+x²) dx - (1/2)∫(0->+∞) x/(1+x²) dx + (1/2)∫(0->+∞) dx/(1+x)
= (1/2)arctanx - (1/4)ln(1+x²) + (1/2)|1+x|:(0->+∞)
= (1/2)arctanx - (1/4)ln(1+x²) + (1/4)ln|(1+x)²|
= (1/2)arctanx + (1/4)ln[(1+2x+x²)/(1+x²)]
= [(1/2)lim(x->+∞) arctanx - 0] + (1/4)ln[(1/x²+2/x+1)/(1/x²+1)]
= (1/2)(π/2) + (1/4)lim(x->+∞) ln[(1/x²+2/x+1)/(1/x²+1)] - (1/4)lim(x->0) ln[(1+2x+x²)/(1+x²)]
= π/4 + (1/4)ln(1) - (1/4)ln(1)
= π/4