高一数学 已知αβ均为锐角,sinα=根号5⼀5,tanβ=3,。 求(1) cos(α-β) (2)α-β

过程清晰 谢谢为什么你们的答案都不一样 = =
2025-04-04 17:57:56
推荐回答(4个)
回答1:

sina=√5/5,cosa=2√5/5,tanb=3,sinb=3/√10,cosb=1/√10
cos(a-b) = cosacosb + sinasinb
= (2√5/5)(1/√10) + (√5/5)(3/√10)
= 3/(5√2)+√2/5
= 3/(5√2)+2/(5√2)
= 1/√2
= √2/2

sin(a-b)
= sinacosb - cosasinb
= (√5/5)(1/√10) - (2√5/5)(3/10)
= 1/(5√2) - 3/(5√5)
= (5√2-6√5)/50

回答2:

tanβ=3
sinβ=3√10/10
cosβ=√10/10
cosα=2根号5/5
cos(α-β)
cosαcosβ+sinαsinβ
=√10/10*2根号5/5+3√10/10*根号5/5
=√50/100+3√50/50
=√2/20+6√2/20
=7√2/20

回答3:

cos(α-β)=cosαcosβ+sinαsinβ
∵0﹤α﹤π/2,0﹤β﹤π/2,且sinα=√5/5,tanβ=3
∴cosα=2√5/5,sinβ=3√10/10,cosβ=√10/10
原式=√2/5+3√2/10=√2/2

回答4:

cos(α-β)=7√2/10