sina=√5/5,cosa=2√5/5,tanb=3,sinb=3/√10,cosb=1/√10
cos(a-b) = cosacosb + sinasinb
= (2√5/5)(1/√10) + (√5/5)(3/√10)
= 3/(5√2)+√2/5
= 3/(5√2)+2/(5√2)
= 1/√2
= √2/2
sin(a-b)
= sinacosb - cosasinb
= (√5/5)(1/√10) - (2√5/5)(3/10)
= 1/(5√2) - 3/(5√5)
= (5√2-6√5)/50
tanβ=3
sinβ=3√10/10
cosβ=√10/10
cosα=2根号5/5
cos(α-β)
cosαcosβ+sinαsinβ
=√10/10*2根号5/5+3√10/10*根号5/5
=√50/100+3√50/50
=√2/20+6√2/20
=7√2/20
cos(α-β)=cosαcosβ+sinαsinβ
∵0﹤α﹤π/2,0﹤β﹤π/2,且sinα=√5/5,tanβ=3
∴cosα=2√5/5,sinβ=3√10/10,cosβ=√10/10
原式=√2/5+3√2/10=√2/2
cos(α-β)=7√2/10