已知函数f(x)=13x3?ax2+3ax(a∈R),(1)当a=-1时,求函数f(x)的单调递增区间;(2)若函数f(x)在x=

2025-02-25 03:35:30
推荐回答(1个)
回答1:

(1)当a=-1时,f(x)=
1
3
x3+x2-3x,
∴f'(x)=x2+2x-3,(2分)
令f'(x)>0,即x2+2x-3>0,解得x>1或x<-3,
∴函数f(x)的单调递增区间是(1,+∞),(-∞,-3);(5分)
(2)函数f(x)在x=x1和x=x2处有极值,且f'(x)=x2-2ax+3a
∴x1和x2为方程x2-2ax+3a=0的两根,
△>0
x1+x2=2a
x1x2=3a
,由△>0得4a2-12a>0,∴a>3或a<0,①
x2
x1
+
x1
x2
=
x
+
x
x1x2
=
(x
+
x
) 2?2x1x2
x1x2
=
4a2?6a
3a
4a
3
?2

设t=
x2
x1
,且1<
x2
x1
≤3
,∴1<t≤3.
x2
x1
+
x1
x2
=t+
1
t
,此函数在(0,1)上递减,(1,+∞)递增,
∴2<
x2
x1
+
x1
x2
10
3
,∴2<
4a
3
-2≤
10
3
,?3<a≤4②
由①②实数a的取值范围3<a≤4.