(1)证明:∵AA1⊥平面ABC,BC?平面ABC.
∴AA1⊥BC,又AB为斜边,∴BC⊥AC,又AA1∩AC=A,
∴BC⊥平面A1AC,
又BC?面A1BC,∴面A1BC⊥平面AA1C;
(2)解:在Rt△A1AB中,AA1=AB=4,
设AC=a,BC=b,则a2+b2=16
V(x)=
?4?1 3
?a?b=1 2
ab≤2 3
2 3
=
a2+b2
2
,当a=b时取等号.32 3
∴AC=BC时三棱锥A1-ABC的体积V最大,
取AB中点O,则CO⊥AB,
∵AA1⊥平面ABC,∴AA1⊥CO
∴CO⊥面A1BC,∴CO⊥A1B
做OD⊥A1B于D,连接CD
则A1B⊥面COD
∴∠CDO为二面角A-A1B-C的平面
又∵CO=OB=2,OD=
,
2
∴CD=
6
故cos∠CDO=
=OD CD
.
3
3