xlnxdy+(y-lnx)dx=0,
x(lnxdy+
1
x
ydx)?lnxdx=0,
xd(ylnx)=lnxdx,
d(ylnx)=
lnx
x
dx=lnxdlnx=d[
1
2
(lnx)2];
ylnx=
1
2
(lnx)2+c,c为任意常数,
由于y|x=e=1,
所以,1×lne=
1
2
×(lne)2+c
1×1=
1
2
×12+c
c=
1
2
所以,微分方程xlnxdy+(y-lnx)dx=0满足条件y|x=e=1的特解为ylnx=
1
2
(lnx)2+
1
2
.
解:令z=1/y²,则dy=-y³dz/2
代入原方程,化简得xdz+2zdx=-2x(1+lnx)dx
==>x²dz+2xzdx=-2x²(1+lnx)dx
==>d(x²z)=-2x²(1+lnx)dx
于是,x²z=-2∫x²(1+lnx)dx
=-2[x³(1+lnx)/3-(1/3)∫x²dx]
(应用分部积分法)
=c/9-2x³(2+3lnx)/9
(c是任意常数)
==>x²/y²=c/9-2x³(2+3lnx)/9
==>9x²=[c-2x³(2+3lnx)]y²
故原方程的通解是9x²=[c-2x³(2+3lnx)]y²。