bcosC=2acosB-ccosBsinBcosC=2sinAcosB-sinCcosBsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2sinAcosBsinA=2sinAcosBsinA≠0∴2cosB=1cosB=1/2B=60°A+C=120°y=cos2A+cos2C=2cos(A+C)cos(A-C)=2cos120°cos(A-C)=-cos(A-C)-120°∴-1/2