lim(x->0) (∫(0->x) e^(t^2) dt)^2 / ∫(0->x) te^(2t^2) dt (0/0)
=lim(x->0) 2e^(x^2). (∫(0->x) e^(t^2) dt) / xe^(2x^2)
=lim(x->0) 2∫(0->x) e^(t^2) dt /[ xe^(x^2) ] (0/0)
=lim(x->0) 2e^(x^2) / [ (2x^2+1)e^(x^2) ]
=lim(x->0) 2 / (2x^2+1)
=2