(1)x²y=e^(x+y)
2xy+x²y'=e^(x+y)·(1+y')
y'[x²-e^(x+y)]=e^(x+y)-2xy
y'=[e^(x+y)-2xy]/[x²-e^(x+y)]=dy/dx
(2)y=1-xe^y
y'=-e^y-xe^y·y'
y'(1+xe^y)=-e^y
∴dy/dx=-e^y/(1+xe^y)
2xy+x²y'=(1+y')e^(x+y)
x²y'-y'e^(x+y)=e^(x+y)-2xy
dy/dx=[e^(x+y)-2xy]/[x²-e^(x+y)]
y'=0-(e^y+x*y'*e^y)
dy/dx=-e^y/(1+x*e^y)
e^x+(y+x*y')=y'*e^y
y'=(e^x+y)/(e^y-x)